Cation effects on rotational dynamics of anions and water molecules in alkali (Li+, Na+, K+, Cs+) thiocyanate (SCN-) aqueous solutions.
نویسندگان
چکیده
Waiting time dependent rotational anisotropies of SCN(-) anions and water molecules in alkali thiocyanate (XSCN, X = Li, Na, K, Cs) aqueous solutions at various concentrations were measured with ultrafast infrared spectroscopy. It was found that cations can significantly affect the reorientational motions of both water molecules and SCN(-) anions. The dynamics are slower in a solution with a smaller cation. The reorientational time constants follow the order of Li(+) > Na(+) > K(+) ~/= Cs(+). The changes of rotational time constants of SCN(-) at various concentrations scale almost linearly with the changes of solution viscosity, but those of water molecules do not. In addition, the concentration-dependent amplitudes of dynamical changes are much more significant in the Li(+) and Na(+) solutions than those in the K(+) and Cs(+) solutions. Further investigations on the systems with the ultrafast vibrational energy exchange method and molecular dynamics simulations provide an explanation for the observations: the observed rotational dynamics are the balanced results of ion clustering and cation/anion/water direct interactions. In all the solutions at high concentrations (>5 M), substantial amounts of ions form clusters. The structural inhomogeneity in the solutions leads to distinct rotational dynamics of water and anions. The strong interactions of Li(+) and Na(+) because of their relatively large charge densities with water molecules and SCN(-) anions, in addition to the likely geometric confinements because of ion clustering, substantially slow down the rotations of SCN(-) anions and water molecules inside the ion clusters. The interactions of K(+) and Cs(+) with water or SCN(-) are much weaker. The rotations of water molecules inside ion clusters of K(+) and Cs(+) solutions are not significantly different from those of other water species so that the experimentally observed rotational relaxation dynamics are only slightly affected by the ion concentrations.
منابع مشابه
Vibrational energy transfer: an angstrom molecular ruler in studies of ion pairing and clustering in aqueous solutions.
The methodology and principle using vibrational energy transfer to measure molecular distances in liquids are introduced. The application of the method to the studies of ion pairing and clustering in strong electrolyte aqueous solutions is demonstrated with MSCN aqueous solutions where M = Li, Na, K, Cs, and NH4. Experiments suggest that ions in the concentrated aqueous solutions can form subst...
متن کاملIon segregation in aqueous solutions.
Microscopic structures and dynamics of aqueous salt solutions were investigated with the ultrafast vibrational energy exchange method and anisotropy measurements. In KSCN aqueous solutions of various concentrations, the rotational time constants of SCN(-) anions are proportional to the viscosities of the solutions. However, the reorientation dynamics of the water molecules are only slightly aff...
متن کاملRemoval of thiocyanate ions from aqueous solutions using polypyrrole and polyaniline conducting electroactive polymers
Polypyrrole (PPy/Cl) and polyaniline (PAni/Cl) synthesized chemically onto sawdust (SD)was used for removal of thiocyanate (SCN-) ions from aqueous solutions. The effect of someimportant parameters such as pH, initial concentration, sorbent dosage, and contact time onuptake of SCN- was investigated. PPy/SD was found to be much more effective sorbent thanPAni/SD for uptake SCN- from aqueous solu...
متن کاملIon association in aqueous solutions probed through vibrational energy transfers among cation, anion, and water molecules.
KSCN and NH4SCN aqueous solutions were investigated with intermolecular vibrational energy transfer methods. In a KSCN/H2O (1/10 molar ratio) solution, 90% of the initial excitation of the CN stretch (~2066 cm(-1)) of the SCN(-) anion is transferred to the HOH bending mode (~1636 cm(-1)) of water molecules with an energy transfer time constant 3.1 ps. In a NH4SCN/H2O (1/10 molar ratio) solution...
متن کاملRotational dynamics of thiocyanate ions in highly concentrated aqueous solutions.
The thiocyanate (SCN(-)) anion is known as one of the best denaturants, which is also capable of breaking the hydrogen-bond network of water and destabilizing native structures of proteins. Despite prolonged efforts to understand the underlying mechanism of such Hofmeister effects, detailed dynamics of the ions in a highly concentrated solution have not been fully elucidated yet. Here, we used ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 117 26 شماره
صفحات -
تاریخ انتشار 2013